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Redefining What’s Possible in Edge AI with the ECS-DoT 

AI Model – the Shift from Cloud-Based to the Micro Edge AI 

We are living in what many refer to as an artificial intelligence (AI) Summer – a golden era 
marked by rapid innovation, soaring investments, and the seamless integration of AI into 
daily life. This transformative wave was set into motion in 2012, when deep learning 
achieved a breakthrough in the ImageNet competition, dramatically outperforming 
traditional approaches. That moment ignited an unstoppable chain reaction: AlphaGo’s 
triumph in 2016, the rise of transformer architectures in 2017, and the global 
mainstreaming of generative AI in late 2022, when ChatGPT alone reached over 100 million 
users in just two months. 

Since then, AI has permeated almost every digital interaction. It curates what we see on 
TikTok and Instagram, personalizes our shopping on Amazon, helps us navigate cities 
through Google Maps, powers real-time translation, enables biometric authentication, and 
flags fraud in financial systems. AI has shifted from being a lab-bound novelty to a daily 
utility, silently shaping our choices, habits, and behaviors. For researchers, it enables 
breakthroughs across physics, biology, and climate science. And for everyday users, it’s a 
quiet companion embedded in everyday tasks. 

This massive growth, however, has largely been powered by centralized cloud AI – systems 
that rely on sending data from edge devices (phones, sensors, wearables, cameras, 
vehicles) to distant servers for processing, and then returning the results. While this model 
has served us well, it carries increasing costs: latency, energy consumption, bandwidth 
limitations, privacy concerns, and dependence on constant connectivity. 

So what’s next? 

The next logical leap is to bring AI closer to the data source itself—to empower devices to 
think where the data is born. This is the vision of edge AI – a decentralized, efficient, and 
context-aware form of intelligence that lives on the device, enabling fast, private, low-
power decision-making – with minimal dependence on the cloud. 
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And yet, for all the excitement, edge AI hasn’t fully arrived. Despite remarkable strides in 
ultra-efficient chips, model compression, and embedded toolchains, most edge 
deployments remain limited to simple use cases – wake-word detection, object presence, 
step counting. The leap to truly intelligent, adaptive, multimodal edge devices – capable of 
running sophisticated AI models while consuming milliwatts or less – remains out of reach 
for most platforms. 

This is where EMASS enters the story. At EMASS, we believe that solving Edge AI’s toughest 
challenges requires a radical rethink of the entire compute stack – from the physics of the 
transistor to the logic of the application. This is the essence of our “Atoms-to-Apps” 
philosophy: 

● We start with the requirements of real-world applications, 

● We co-design hardware and software to work together seamlessly; and, 

● We push the frontier of device physics – integrating emerging nanotechnologies, 
while creating architectures that address the practical limitations of both new 
materials and conventional approaches. 

Our first embodiment of this vision is the ECS-DoT chip – a lean SoC optimized to process 
data only when needed, dramatically extending what’s possible under milliwatt-level power 
budgets. With it, we aim to prove that true edge intelligence doesn't start in the cloud, it 
starts with semiconductor physics and is resolved when people use their edge AI products 
– it goes from atom to app.  
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Edge AI is Fundamentally Different 

AI, as we know it today, is resident largely in the cloud. In the conventional model, data is 
captured by edge devices (like cameras, phones, or wearables), transmitted to remote data 
centers where AI models process it, and then the results are sent back to the device. This 
works well when speed isn’t critical and connectivity is stable. But the cloud has limits. 

Edge AI fundamentally differs from cloud-based AI by processing data directly on the device 
rather than sending it to remote data centers. Let’s consider a vision-based AI application – 
say, a real-time security camera tasked with person detection. A typical cloud-based 
solution captures high-resolution images (e.g., 1080p) and transmits them (a stream that 
might require megabytes per second of bandwidth) to cloud servers (e.g., AWS GPUs 
running YOLOv5), achieving high accuracy (~92%) but at the cost of latency (150–300 ms), 
high energy consumption (~2–3 joules per inference), and potential privacy risks, especially 
in regulated environments like healthcare or smart homes. 

Edge AI addresses these challenges by deploying significantly smaller and highly optimized 
AI models (e.g., quantized MobileNet-SSD) directly onto specialized low-power chips like 
EMASS's ECS-DoT or Google's Edge tensor processing unit (TPU). Although these models 
trade off some accuracy (82–88%), they drastically reduce latency (<10 ms), reduce energy 
consumption to a few millijoules per inference, and eliminate the need for data transfer 
entirely, achieving real-time, energy-efficient, and privacy-preserving inference. 

Advances in model compression, quantization, and hardware-software co-design have 
made this approach practical, unlocking entirely new classes of applications previously 
constrained by power, latency, or privacy. 

Edge AI is not just a matter of where the computation happens. It’s a fundamental re-
architecture of the AI stack with smaller, specialized models; architectures optimized for 
energy, memory, and latency; and co-designed hardware that can operate within tight 
constraints, often without active cooling or constant power. 
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Edge Is a Spectrum: From Wall-Plugged to Microwatt-Scale Intelligence 

Edge AI exists because the real world doesn’t tolerate the delays, costs, and privacy risks of 
streaming every bit of sensor data off to a distant cloud. When milliseconds matter – when 
a car is braking, on a factory inspection line, or in a critical health monitor – you can’t afford 
network jitter or expensive bandwidth. Regulations and customer trust demand that 
personal video and health data stay on-device. And since the infrastructure for capturing 
that data (cameras, drones, wearables) already exists, it makes economic and logistical 
sense to “piggyback” AI right where the data is born. 

However, edge AI is not one-size-fits-all. Different applications impose vastly different 
constraints on power, compute, memory, latency, and connectivity. A warehouse gateway 
can draw tens of watts and host gigabytes of DRAM, while a wearable sensor may have only 
a few millijoules of energy per inference and a few hundred kilobytes of memory. To 
address this spectrum, we categorize edge AI into Macro, Meso, and Micro tiers, each 
calibrated to the unique trade-offs and opportunities at its end of the continuum. 

At the macro edge, AI-powered gateways and mini-data-centers sit on factory floors or in 
server closets. Plugged into the mains and outfitted with 50–300 TOPS (Tera Operations Per 
Second) of INT8 acceleration and gigabytes of memory, they run large neural networks like 
YOLO v7 for video analytics or BERT for on-site natural-language processing. For example, 
Toyota’s adoption of an NVIDIA Jetson AGX Orin cluster on its assembly lines reduced 
defect-inspection delays by 30%, all while keeping sensitive production line data behind 
the factory firewall and maintaining sub-10 ms inference times. 
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Moving down the power curve, the meso edge lives inside the devices we carry or fly. 
Smartphones, AR headsets, and inspection drones—powered by NPUs such as 
Qualcomm’s Hexagon or Apple’s Neural Engine, which deliver 5–30 TOPS of compute 
within a 0.2–5 W envelope. These platforms run compact models like MobileNet-SSD for 
face unlock, EfficientNet-Lite for real-time translation, or tiny Transformer variants for 
contextual assistance. Each inference completes in 5–20 ms and consumes only a few 
millijoules, letting drones survey warehouses, headsets translate conversations, or phones 
process images without draining the battery. 

At the far end sits the Micro Edge: always-on sensors, smart tags, and wearables that must 
last months or even years on coin cells or harvested energy. Here, chips like EMASS’s ECS-
DoT squeeze 0.1–1 TOPS and a few hundred kilobytes of SRAM into a sub-10 mW package. 
They execute TinyML workloads such as wake-word detection, presence sensing, vital-sign 
anomaly spotting, in under 10 ms and at just 1–10 µJ per inference. This whisper-quiet, 
ultra-efficient intelligence enables truly autonomous sensing in environments where 
changing batteries is impractical or impossible. 

Together, macro, meso, and micro edge form a seamless continuum – each tier tuned to 
balance latency, energy, cost, and privacy in its own way. In the pages that follow, we’ll 
zoom in on the micro edge, where EMASS’s Atoms-to-Apps co-design philosophy and the 
ECS-DoT architecture break through previous limits, unlocking a new era of always-on, 
ubiquitous intelligence. 
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EMASS Holistic Approach 

Atoms-to-Apps embodies EMASS’s end-to-end approach to systems design. The 
semiconductor industry has driven integration down to sub-micron dimensions, a level 
where features can in fact measure mere atoms across or deep. Atoms-to-Apps starts at 
the device level and flows through circuit design, micro-architecture, compilers, runtimes, 
and application optimization. If the objective is ultra-low-power, always-on inference with 
high fidelity, devices, chips, models and applications cannot be treated as independent 
silos.  

Orchestrating design decisions across conceptual layers – and propagating constraints and 
metrics both up and down the stack – unlocks efficiency and capability gains far greater 
than optimizing any single layer in isolation. 

Below we highlight the main pillars that EMASS’ approach is built on.  

Nanodevices — Concise System Implications 

Emerging nanodevices are the physical levers that change what is possible at the micro 
edge. For micro edge AI the two most relevant are storage devices:  resistive memories 
(RRAM / ReRAM) and magneto/ferroelectric devices (MRAM / FeFET). Each class of memory 
trades density, persistence, read/write energy, and endurance differently – and those 
tradeoffs directly determine circuit choices, array organization, and software strategies. 

RRAM / ReRAM (scalable, BEOL-friendly, MLC capable): RRAM is attractive for micro-edge 
designs because it scales well in area, can be integrated into the back end-of-line (BEOL) of 
standard CMOS processes, and supports multi-level (multi-bit) storage per cell. Those 
properties make RRAM a natural candidate for neural networks (especially those with very 
dense on-chip weight banks) and for analog Compute-in-Memory (CIM) implementations 
that similarly work well in neural networks  (by reducing the need for energy-intensive 
transfers of data off and on chip). In practice, the array-level picture is complex – device 
variability, nonlinear I–V characteristics, ADC and peripheral overhead, and 
endurance/retention tradeoffs must be managed. When peripheral, calibration and error-
management costs are accounted for, RRAM can deliver large wins for inference-
dominated workloads that benefit from persistent, dense weights. 

MRAM / FeFET (robust persistence, low-energy updates): MRAM offers fast reads, strong 
retention and high endurance, making it ideal for persistent caches, control state, and 
small weight buffers. FeFETs complement this role by offering low-energy writes and 
CMOS-friendly voltages, enabling near-instant resume with minimal cold-start penalty. 
Both are preferred where frequent small updates or high read rates are expected and where 
endurance budgets can be managed. 

Logic Devices and Integration 

Advanced logic structures, such as Gate-All-Around (GAA) transistors and  Carbon 
Nanotube Field - Effect Transistors (CNFETs) can lower leakage and push near-threshold 
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energy efficiency, while heterogeneous integration structures and techniques (such as 
interposers and 3D stacking, respectively) can dramatically shorten interconnects and 
increase bandwidth-per-watt. Both yield system advantages ,but bring supply-chain, 
thermal and BOM costs that must be justified by end-to-end gains. 

Array and Peripheral Realities 

Device numbers alone are misleading – ADC resolution and count, sense drivers, 
calibration, Error Correction Codes (ECC) and periphery area often dominate energy and 
area in CIM designs. Any decision to adopt RRAM/CIM must amortize peripheral costs 
across sufficient on-chip density or workload patterns (e.g., large, read-dominant weight 
banks). 

Practical System Implications 

Edge AI is an inherently Atoms-to-Apps endeavor because decisions made at either end will 
almost certainly have implications for the other. The results desired from any application 
will dictate the best AI techniques to use, which in turn will dictate implementations at the 
circuit and device level. Here are just some examples of Atoms-to-Apps design 
considerations:  

● Match device choice to workload: inference-dominated, read-heavy applications 
are the best fit for persistent RRAM weight storage; frequently updating workloads 
favor MRAM/FeFET/SRAM (depending on macro sizes and offerings by foundries). 

● Use a hybrid memory hierarchy:  

o SRAM for hot working sets 

o MRAM/FeFET for state and small buffers (if permissible by foundries) 

o RRAM for dense, persistent weight banks when peripheral costs are 
amortized. 

● Exploit RRAM’s BEOL compatibility and MLC capability to pack large models or 
multiple quantization levels on-chip, but design compilers and runtimes to tolerate 
variability and non-idealities. 

● Quantify non-ideal costs (ADC energy, calibration, ECC, endurance management, 
packaging) early in the design flow. 

ECS-DoT adopts a pragmatic hybrid approach: leverage RRAM’s density and BEOL 
integrability for persistent weight storage where justified, use MRAM/FeFET for fast state 
and small caches (if needed and adequate macro sizes are offered by foundries), and retain 
SRAM for critical hot paths. The design rule is simple – commit to RRAM/CIM only when a 
full stack budget (including ADC/peripheral and endurance costs) shows clear, repeatable 
system advantage. 
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Managing Power is Critical      

The central circuit principle for ultra-efficient micro-edge AI is straightforward and practical 
– only the circuits that must be doing work should consume meaningful energy – devote 
energy only to what must be active.       

In sparse-duty, always-on systems, the system spends most of its life idle. This means the 
single  largest lever for efficiency is to shrink idle power to a vanishing fraction of active 
power. When done correctly, this approach  converts short bursts of inference into a cost 
that is negligible compared with long idle intervals –  enabling months or years of battery life 
on tiny cells, which should open use cases that were previously impossible. 

Putting that principle into engineering practice yields three immediate and interdependent 
priorities that must drive design choices across device, circuit and architecture. 

First, minimize the always-on budget before anything else. For micro-edge nodes, idle 
leakage typically dominates total energy for sparse workloads. Hence minimizing or even 
eliminating idle power altogether is critical to achieve significant power savings. Aggressive 
power minimization through gating and voltage scaling are a necessity in this context. 

Second, make wake costs predictable and far smaller than saved idle energy. Any gating or 
persistence strategy only helps when the energy to resume is meaningfully lower than the 
idle energy it replaces. Design to a clear break-even point for your expected duty cycle, and 
favor small, always-available sensor front ends plus persistent state so resume is fast, low-
energy, and repeatable in the field. 

Third, trade granularity against complexity with discipline. Fine-grained power domains and 
retention islands unlock the biggest savings, but each added domain increases control 
logic, verification scope, and area. Match domain granularity to the application’s active set 
and duty pattern: coarse domains where activity is frequent, fine domains where long-idle 
intervals dominate.  

Finally, measure everything and hold to targets. EMASS treats the above as constraints, not 
recipes – implementation options (power switches, retention islands, persistent storage) 
are chosen only when they demonstrably move the system toward agreed, end-to-end 
targets under realistic manufacturing and cost assumptions. That discipline 

      principle → target → justified implementation  

      is what turns the “direct energy” idea into reliable, deployable micro-edge products. 

Microarchitecture 

At micro scale the microarchitecture is not about raw peak TOPS — it is about how data 
moves. AI ordinarily entails frequent transfers of data between logic and memory. At the 
Macro level, this is inconvenient, but as you move through Meso to Micro, the amount of 
energy consumed by these operations becomes problematic  The design objective, then, is 
to exploit locality and reduce data footprint so that energy spent moving bytes is minimized 
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and energy is spent doing arithmetic. To that end, EMASS adopts a memory-centric 
microarchitecture where compute and memory are interwoven.  

The AI acceleration module we built is very efficient; it is a compact, optimized acceleration 
fabric purpose-built for micro-edge workloads. This fabric is further enriched by a handful 
of specialized blocks for non-linear ops and accelerated support for algorithmic 
optimizations performed at the application level, and near-memory interface, with scalable 
interconnects to on-chip memory banks. 

EMASS’ microarchitecture module also integrates a lightweight device-management IP that 
addresses practical nanodevice challenges with minimal runtime cost. This IP provides 
low-overhead services such as per-bank calibration offsets, ECC/sensitivity compensation, 
wear-aware allocation and write-minimization policies, and compact health telemetry. 
Critically, these functions run locally, and are sized to avoid negating the energy gains from 
near-memory or CIM approaches. In short: device non-idealities are managed as part of the 
architecture, not as an afterthought. 

Application Layer      

At the application layer the problem is simple to state and fiendishly hard to solve in 
practice: deliver the required task-level accuracy and latency while fitting the model and its 
working set into extremely tight memory and energy budgets.  

Success requires treating algorithms as first-order design levers, not as artifacts to be 
squashed into hardware after the fact. That means selecting and combining model 
transforms that reduce memory footprint and active computation without introducing extra 
memory traffic or unnecessary operations that would defeat the energy budget. 

Common, widely-used techniques – described here as engineering primitives rather than 
proprietary recipes – include quantization and mixed precision (per-channel / per-layer 
where useful); structured pruning and block sparsity that allow whole lanes or banks to be 
gated; operator fusion and reordering to eliminate intermediates; tiling and streaming so 
only a small working tile resides in SRAM; knowledge distillation to produce compact 
students; early-exit cascades so heavy stages run only when needed; low-rank / separable 
factorizations to reduce memory and compute; and on-demand compression schemes 
that trade a small decompression cost for dramatically reduced persistent-store transfers. 
Each technique is chosen not merely to save ops but to reduce bytes moved and to create 
large, hardware-friendly opportunities for power gating. 

Crucially, these algorithmic choices are not independent of the microarchitecture or the 
device layer; they are co-designed. The acceleration module exposes primitives (bitwidth 
controls, sparsity masks, fusion hooks, bankable memory tiles) so the compiler maps 
transforms onto the hardware with minimal control overhead. Simultaneously, the 
compiler schedules memory access patterns to maximize locality, avoid frequent writes to 
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endurance-sensitive NVM, and amortize ADC/peripheral costs when analog CIM is used. In 
short: algorithms become hardware-aware (they produce locality, sparsity and predictable 
access), the architecture is algorithm-aware (it supports those primitives efficiently), and 
the runtime enforces device-aware policies (wear-aware allocation, amortized 
maintenance, on-demand decompression) so non-idealities remain visible and 
manageable. In short: algorithms are written for the device; the architecture provides low-
overhead primitives to implement them; and the runtime closes the loop to deliver 
predictable energy, latency and lifetime. 

Introducing the ECS-DoT – A New Architecture for Edge Intelligence 

The ECS-DoT is the first embodiment of EMASS’s Atoms-to-Apps philosophy – an SoC 
designed from the ground up for ultra-low-power, always-on intelligence at the micro edge. 
Unlike conventional SoCs that bolt on AI accelerators, ECS-DoT integrates compute, 
memory, and sensor interfaces into a single architecture optimized for real-time, local 
machine learning. 

By fusing architectural efficiency with practical deployment features, ECS-DoT extends the 
principles discussed throughout this paper – memory-centric design, hybrid device 
integration, and power-aware microarchitecture – into a product that can be designed into 
next-generation devices today. 

Architecture highlights: 

• Power efficiency – operates at 0.1–5 mW per inference, enabling continuous, 
always-on sensing in battery-constrained devices.; 

• Latency / real-time responsiveness – achieves <10 ms per inference, delivering 
instant responsiveness without cloud or host processing; 

• Energy per inference – consumes just 1–10 µJ per inference, allowing complex AI 
processing locally without draining batteries; 

• Multimodal sensor fusion – handles inertial sensors, microphone, and camera 
inputs in parallel at milliwatt-scale for richer contextual awareness; 

• Integrated memory and on-device processing – includes up to 4 MB on-chip memory 
for fully on-device model execution with no off-chip DRAM. 

While many companies have introduced NPUs and microcontrollers that claim “edge AI” 
capabilities, most remain constrained by high power draw, limited memory, and sluggish 
responsiveness. The ECS-DoT stands apart by delivering significantly lower latency (<10 
ms) and dramatically lower energy per inference (1–10 µJ)—making true always-on 
intelligence feasible in battery-powered devices. The table below highlights how ECS-DoT 
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compares to leading alternatives, underscoring its unique position in enabling real-time, 
multimodal, and sustainable AI at the micro edge: 

Feature / Metric EMASS ECS-DoT Competitor A Competitor B 

Power per Inference 0.1-5 mW 5-100 mW 30-150 mW 

Latency <10 ms 10-15 ms 10-100 ms 

Energy per Inference 1-10 µJ 30-150 µJ 100-2,000 µJ 

On-Device Memory Up to 2MB SRAM     + 
2MB MRAM/RRAM 

up to 1MB SRAM  2MB SRAM with 
optional 2MB MRAM 

Multimodal Sensor Fusion Yes, milliwatt-scale Limited Limited 

Always-On Viable? Yes No No 

Application Enablement – Where ECS-DoT Creates Value 

ECS-DoT’s architecture directly translates into system-level benefits that open new 
opportunities across industries: 
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• Wearables – Extends smartwatch and fitness tracker battery life by days through 
efficient biosignal, gesture, and activity inference. Medical wearables can run 24/7 
anomaly detection without frequent recharging, improving compliance and safety. 

• Drones – Every milliwatt saved translates into longer flight time and payload 
capacity. ECS-DoT enables real-time navigation, obstacle avoidance, and predictive 
maintenance onboard, independent of cloud connectivity. 

• Industrial IoT & Robotics – Delivers predictive maintenance by analyzing vibration 
and acoustic signatures at the edge, reducing downtime and service costs. 
Millisecond-level inference supports faster robotic control loops and safer factory 
automation. 

• Smart Devices – Cameras, remotes, and security systems process data locally, 
reducing bandwidth use and preserving privacy. Devices wake intelligently only 
when needed, improving responsiveness while lowering energy consumption. 

• Healthcare & MedTech – Portable diagnostics and patient monitoring systems gain 
continuous operation under tight power budgets, enabling real-time vital sign 
monitoring and anomaly alerts in hospital and home settings. 

• AgTech & Environmental Sensors – Ultra-low power enables season-long 
deployments on coin cells or solar harvesting. ECS-DoT processes soil, water, and 
air quality data locally, reducing wireless transmission and enabling autonomous 
field sensing. 

Conclusion – from Architecture to Applications 

Edge AI’s future depends not just on smaller models or lower power chips but on 
architectures built intentionally for the micro edge. ECS-DoT is that architecture—
extending Atoms-to-Apps design principles into a chip that delivers real benefits in the 
field: longer drone flight times, longer-lasting wearables, safer factories, smarter 
healthcare, and sustainable environmental monitoring. 

By collapsing complexity into one ultra-efficient package, ECS-DoT not only redefines 
what’s possible today but also signals the direction of the industry: always-on, everywhere, 
and fundamentally local intelligence. 


